Binary Search
Binary search is the search technique which works efficiently on the sorted lists. Hence, in order to search an element into some list by using binary search technique, we must ensure that the list is sorted.
Binary search follows divide and conquer approach in which, the list is divided into two halves and the item is compared with the middle element of the list. If the match is found then, the location of middle element is returned otherwise, we search into either of the halves depending upon the result produced through the match.
Binary search algorithm is given below.
BINARY_SEARCH(A, lower_bound, upper_bound, VAL)
- Step 1: [INITIALIZE] SET BEG = lower_bound
END = upper_bound, POS = - 1 - Step 2: Repeat Steps 3 and 4 while BEG <=END
- Step 3: SET MID = (BEG + END)/2
- Step 4: IF A[MID] = VAL
SET POS = MID
PRINT POS
Go to Step 6
ELSE IF A[MID] > VAL
SET END = MID - 1
ELSE
SET BEG = MID + 1
[END OF IF]
[END OF LOOP] - Step 5: IF POS = -1
PRINT "VALUE IS NOT PRESENT IN THE ARRAY"
[END OF IF] - Step 6: EXIT
Complexity
SN | Performance | Complexity |
---|---|---|
1 | Worst case | O(log n) |
2 | Best case | O(1) |
3 | Average Case | O(log n) |
4 | Worst case space complexity | O(1) |
Example
Let us consider an array arr = {1, 5, 7, 8, 13, 19, 20, 23, 29}. Find the location of the item 23 in the array.
In 1st step :
- BEG = 0
- END = 8ron
- MID = 4
- a[mid] = a[4] = 13 < 23, therefore
in Second step:
- Beg = mid +1 = 5
- End = 8
- mid = 13/2 = 6
- a[mid] = a[6] = 20 < 23, therefore;
in third step:
- beg = mid + 1 = 7
- End = 8
- mid = 15/2 = 7
- a[mid] = a[7]
- a[7] = 23 = item;
- therefore, set location = mid;
- The location of the item will be 7.
Binary Search Program using Recursion
C program
- #include<stdio.h>
- int binarySearch(int[], int, int, int);
- void main ()
- {
- int arr[10] = {16, 19, 20, 23, 45, 56, 78, 90, 96, 100};
- int item, location=-1;
- printf("Enter the item which you want to search ");
- scanf("%d",&item);
- location = binarySearch(arr, 0, 9, item);
- if(location != -1)
- {
- printf("Item found at location %d",location);
- }
- else
- {
- printf("Item not found");
- }
- }
- int binarySearch(int a[], int beg, int end, int item)
- {
- int mid;
- if(end >= beg)
- {
- mid = (beg + end)/2;
- if(a[mid] == item)
- {
- return mid+1;
- }
- else if(a[mid] < item)
- {
- return binarySearch(a,mid+1,end,item);
- }
- else
- {
- return binarySearch(a,beg,mid-1,item);
- }
- }
- return -1;
- }
Output:
Enter the item which you want to search 19 Item found at location 2
Java
- import java.util.*;
- public class BinarySearch {
- public static void main(String[] args) {
- int[] arr = {16, 19, 20, 23, 45, 56, 78, 90, 96, 100};
- int item, location = -1;
- System.out.println("Enter the item which you want to search");
- Scanner sc = new Scanner(System.in);
- item = sc.nextInt();
- location = binarySearch(arr,0,9,item);
- if(location != -1)
- System.out.println("the location of the item is "+location);
- else
- System.out.println("Item not found");
- }
- public static int binarySearch(int[] a, int beg, int end, int item)
- {
- int mid;
- if(end >= beg)
- {
- mid = (beg + end)/2;
- if(a[mid] == item)
- {
- return mid+1;
- }
- else if(a[mid] < item)
- {
- return binarySearch(a,mid+1,end,item);
- }
- else
- {
- return binarySearch(a,beg,mid-1,item);
- }
- }
- return -1;
- }
- }
Output:
Enter the item which you want to search 45 the location of the item is 5
C#
- using System;
- public class LinearSearch
- {
- public static void Main()
- {
- int[] arr = {16, 19, 20, 23, 45, 56, 78, 90, 96, 100};
- int location=-1;
- Console.WriteLine("Enter the item which you want to search ");
- int item = Convert.ToInt32(Console.ReadLine());
- location = binarySearch(arr, 0, 9, item);
- if(location != -1)
- {
- Console.WriteLine("Item found at location "+ location);
- }
- else
- {
- Console.WriteLine("Item not found");
- }
- }
- public static int binarySearch(int[] a, int beg, int end, int item)
- {
- int mid;
- if(end >= beg)
- {
- mid = (beg + end)/2;
- if(a[mid] == item)
- {
- return mid+1;
- }
- else if(a[mid] < item)
- {
- return binarySearch(a,mid+1,end,item);
- }
- else
- {
- return binarySearch(a,beg,mid-1,item);
- }
- }
- return -1;
- }
- }
Output:
Enter the item which you want to search 20 Item found at location 3
Python
- def binarySearch(arr,beg,end,item):
- if end >= beg:
- mid = int((beg+end)/2)
- if arr[mid] == item :
- return mid+1
- elif arr[mid] < item :
- return binarySearch(arr,mid+1,end,item)
- else:
- return binarySearch(arr,beg,mid-1,item)
- return -1
- arr=[16, 19, 20, 23, 45, 56, 78, 90, 96, 100];
- item = int(input("Enter the item which you want to search ?"))
- location = -1;
- location = binarySearch(arr,0,9,item);
- if location != -1:
- print("Item found at location %d" %(location))
- else:
- print("Item not found")
Output:
Enter the item which you want to search ? 96 Item found at location 9 Enter the item which you want to search ? 101 Item not found
Binary Search function using Iteration
- int binarySearch(int a[], int beg, int end, int item)
- {
- int mid;
- while(end >= beg)
- {
- mid = (beg + end)/2;
- if(a[mid] == item)
- {
- return mid+1;
- }
- else if(a[mid] < item)
- {
- beg = mid + 1;
- }
- else
- {
- end = mid - 1;
- }
- }
- return -1;
- }